
19
CONCURRENCY CONTROL

Pooh was sitting in his house one day, counting his pots of honey, when there

came a knock on the door.

“Fourteen,” said Pooh. “Come in. Fourteen. Or was it fifteen? Bother.

That’s muddled me.”

“Hallo, Pooh,” said Rabbit. “Hallo, Rabbit. Fourteen, wasn’t it?” “What

was?” “My pots of honey what I was counting.”

“Fourteen, that’s right.”

“Are you sure?”

“No,” said Rabbit. “Does it matter?”

—A.A. Milne, The House at Pooh Corner

In this chapter, we look at concurrency control in more detail. We begin by looking at

locking protocols and how they guarantee various important properties of schedules in

Section 19.1. Section 19.2 covers how locking protocols are implemented in a DBMS.

Section 19.3 discusses three specialized locking protocols—for locking sets of objects

identified by some predicate, for locking nodes in tree-structured indexes, and for

locking collections of related objects. Section 19.4 presents the SQL-92 features related

to transactions, and Section 19.5 examines some alternatives to the locking approach.

19.1 LOCK-BASED CONCURRENCY CONTROL REVISITED

We now consider how locking protocols guarantee some important properties of sched-

ules, namely serializability and recoverability.

19.1.1 2PL, Serializability, and Recoverability

Two schedules are said to be conflict equivalent if they involve the (same set of)

actions of the same transactions and they order every pair of conflicting actions of two

committed transactions in the same way.

As we saw in Section 18.3.3, two actions conflict if they operate on the same data

object and at least one of them is a write. The outcome of a schedule depends only

on the order of conflicting operations; we can interchange any pair of nonconflicting

540

Concurrency Control 541

operations without altering the effect of the schedule on the database. If two schedules

are conflict equivalent, it is easy to see that they have the same effect on a database.

Indeed, because they order all pairs of conflicting operations in the same way, we

can obtain one of them from the other by repeatedly swapping pairs of nonconflicting

actions, that is, by swapping pairs of actions whose relative order does not alter the

outcome.

A schedule is conflict serializable if it is conflict equivalent to some serial schedule.

Every conflict serializable schedule is serializable, if we assume that the set of items in

the database does not grow or shrink; that is, values can be modified but items are not

added or deleted. We will make this assumption for now and consider its consequences

in Section 19.3.1. However, some serializable schedules are not conflict serializable, as

illustrated in Figure 19.1. This schedule is equivalent to executing the transactions

T1 T2 T3

R(A)

W (A)

Commit

W (A)

Commit

W (A)

Commit

Figure 19.1 Serializable Schedule That Is Not Conflict Serializable

serially in the order T1, T2, T3, but it is not conflict equivalent to this serial schedule

because the writes of T1 and T2 are ordered differently.

It is useful to capture all potential conflicts between the transactions in a schedule in

a precedence graph, also called a serializability graph. The precedence graph for

a schedule S contains:

A node for each committed transaction in S.

An arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s

actions.

The precedence graphs for the schedules shown in Figures 18.5, 18.6, and 19.1 are

shown in Figure 19.2 (parts (a), (b), and (c), respectively).

The Strict 2PL protocol (introduced in Section 18.4) allows only serializable schedules,

as is seen from the following two results:

542 Chapter 19

T2 T1

T1

T1 T2

T3

T2

(a) (b)

(c)

Figure 19.2 Examples of Precedence Graphs

1. A schedule S is conflict serializable if and only if its precedence graph is acyclic.

(An equivalent serial schedule in this case is given by any topological sort over the

precedence graph.)

2. Strict 2PL ensures that the precedence graph for any schedule that it allows is

acyclic.

A widely studied variant of Strict 2PL, called Two-Phase Locking (2PL), relaxes

the second rule of Strict 2PL to allow transactions to release locks before the end, that

is, before the commit or abort action. For 2PL, the second rule is replaced by the

following rule:

(2PL) (2) A transaction cannot request additional locks once it releases any

lock.

Thus, every transaction has a ‘growing’ phase in which it acquires locks, followed by a

‘shrinking’ phase in which it releases locks.

It can be shown that even (nonstrict) 2PL ensures acyclicity of the precedence graph

and therefore allows only serializable schedules. Intuitively, an equivalent serial order

of transactions is given by the order in which transactions enter their shrinking phase:

If T2 reads or writes an object written by T1, T1 must have released its lock on the

object before T2 requested a lock on this object. Thus, T1 will precede T2. (A similar

argument shows that T1 precedes T2 if T2 writes an object previously read by T1.

A formal proof of the claim would have to show that there is no cycle of transactions

that ‘precede’ each other by this argument.)

A schedule is said to be strict if a value written by a transaction T is not read or

overwritten by other transactions until T either aborts or commits. Strict schedules are

recoverable, do not require cascading aborts, and actions of aborted transactions can

Concurrency Control 543

be undone by restoring the original values of modified objects. (See the last example

in Section 18.3.4.) Strict 2PL improves upon 2PL by guaranteeing that every allowed

schedule is strict, in addition to being conflict serializable. The reason is that when a

transaction T writes an object under Strict 2PL, it holds the (exclusive) lock until it

commits or aborts. Thus, no other transaction can see or modify this object until T

is complete.

The reader is invited to revisit the examples in Section 18.3.3 to see how the correspond-

ing schedules are disallowed by Strict 2PL and 2PL. Similarly, it would be instructive

to work out how the schedules for the examples in Section 18.3.4 are disallowed by

Strict 2PL but not by 2PL.

19.1.2 View Serializability

Conflict serializability is sufficient but not necessary for serializability. A more general

sufficient condition is view serializability. Two schedules S1 and S2 over the same set

of transactions—any transaction that appears in either S1 or S2 must also appear in

the other—are view equivalent under these conditions:

1. If Ti reads the initial value of object A in S1, it must also read the initial value

of A in S2.

2. If Ti reads a value of A written by Tj in S1, it must also read the value of A

written by Tj in S2.

3. For each data object A, the transaction (if any) that performs the final write on

A in S1 must also perform the final write on A in S2.

A schedule is view serializable if it is view equivalent to some serial schedule. Every

conflict serializable schedule is view serializable, although the converse is not true.

For example, the schedule shown in Figure 19.1 is view serializable, although it is not

conflict serializable. Incidentally, note that this example contains blind writes. This

is not a coincidence; it can be shown that any view serializable schedule that is not

conflict serializable contains a blind write.

As we saw in Section 19.1.1, efficient locking protocols allow us to ensure that only

conflict serializable schedules are allowed. Enforcing or testing view serializability

turns out to be much more expensive, and the concept therefore has little practical

use, although it increases our understanding of serializability.

19.2 LOCK MANAGEMENT

The part of the DBMS that keeps track of the locks issued to transactions is called the

lock manager. The lock manager maintains a lock table, which is a hash table with

544 Chapter 19

the data object identifier as the key. The DBMS also maintains a descriptive entry for

each transaction in a transaction table, and among other things, the entry contains

a pointer to a list of locks held by the transaction.

A lock table entry for an object—which can be a page, a record, and so on, depend-

ing on the DBMS—contains the following information: the number of transactions

currently holding a lock on the object (this can be more than one if the object is

locked in shared mode), the nature of the lock (shared or exclusive), and a pointer to

a queue of lock requests.

19.2.1 Implementing Lock and Unlock Requests

According to the Strict 2PL protocol, before a transaction T reads or writes a database

object O, it must obtain a shared or exclusive lock on O and must hold on to the lock

until it commits or aborts. When a transaction needs a lock on an object, it issues a

lock request to the lock manager:

1. If a shared lock is requested, the queue of requests is empty, and the object is not

currently locked in exclusive mode, the lock manager grants the lock and updates

the lock table entry for the object (indicating that the object is locked in shared

mode, and incrementing the number of transactions holding a lock by one).

2. If an exclusive lock is requested, and no transaction currently holds a lock on

the object (which also implies the queue of requests is empty), the lock manager

grants the lock and updates the lock table entry.

3. Otherwise, the requested lock cannot be immediately granted, and the lock request

is added to the queue of lock requests for this object. The transaction requesting

the lock is suspended.

When a transaction aborts or commits, it releases all its locks. When a lock on an

object is released, the lock manager updates the lock table entry for the object and

examines the lock request at the head of the queue for this object. If this request can

now be granted, the transaction that made the request is woken up and given the lock.

Indeed, if there are several requests for a shared lock on the object at the front of the

queue, all of these requests can now be granted together.

Note that if T1 has a shared lock on O, and T2 requests an exclusive lock, T2’s request

is queued. Now, if T3 requests a shared lock, its request enters the queue behind that

of T2, even though the requested lock is compatible with the lock held by T1. This

rule ensures that T2 does not starve, that is, wait indefinitely while a stream of other

transactions acquire shared locks and thereby prevent T2 from getting the exclusive

lock that it is waiting for.

Concurrency Control 545

Atomicity of Locking and Unlocking

The implementation of lock and unlock commands must ensure that these are atomic

operations. To ensure atomicity of these operations when several instances of the lock

manager code can execute concurrently, access to the lock table has to be guarded by

an operating system synchronization mechanism such as a semaphore.

To understand why, suppose that a transaction requests an exclusive lock. The lock

manager checks and finds that no other transaction holds a lock on the object and

therefore decides to grant the request. But in the meantime, another transaction might

have requested and received a conflicting lock! To prevent this, the entire sequence of

actions in a lock request call (checking to see if the request can be granted, updating

the lock table, etc.) must be implemented as an atomic operation.

Additional Issues: Lock Upgrades, Convoys, Latches

The DBMS maintains a transaction table, which contains (among other things) a list

of the locks currently held by a transaction. This list can be checked before requesting

a lock, to ensure that the same transaction does not request the same lock twice.

However, a transaction may need to acquire an exclusive lock on an object for which

it already holds a shared lock. Such a lock upgrade request is handled specially by

granting the write lock immediately if no other transaction holds a shared lock on the

object and inserting the request at the front of the queue otherwise. The rationale for

favoring the transaction thus is that it already holds a shared lock on the object and

queuing it behind another transaction that wants an exclusive lock on the same object

causes both transactions to wait for each other and therefore be blocked forever; we

discuss such situations in Section 19.2.2.

We have concentrated thus far on how the DBMS schedules transactions, based on their

requests for locks. This interleaving interacts with the operating system’s scheduling of

processes’ access to the CPU and can lead to a situation called a convoy, where most

of the CPU cycles are spent on process switching. The problem is that a transaction

T holding a heavily used lock may be suspended by the operating system. Until T is

resumed, every other transaction that needs this lock is queued. Such queues, called

convoys, can quickly become very long; a convoy, once formed, tends to be stable.

Convoys are one of the drawbacks of building a DBMS on top of a general-purpose

operating system with preemptive scheduling.

In addition to locks, which are held over a long duration, a DBMS also supports short-

duration latches. Setting a latch before reading or writing a page ensures that the

physical read or write operation is atomic; otherwise, two read/write operations might

conflict if the objects being locked do not correspond to disk pages (the units of I/O).

Latches are unset immediately after the physical read or write operation is completed.

546 Chapter 19

19.2.2 Deadlocks

Consider the following example: transaction T1 gets an exclusive lock on object A,

T2 gets an exclusive lock on B, T1 requests an exclusive lock on B and is queued,

and T2 requests an exclusive lock on A and is queued. Now, T1 is waiting for T2 to

release its lock and T2 is waiting for T1 to release its lock! Such a cycle of transactions

waiting for locks to be released is called a deadlock. Clearly, these two transactions

will make no further progress. Worse, they hold locks that may be required by other

transactions. The DBMS must either prevent or detect (and resolve) such deadlock

situations.

Deadlock Prevention

We can prevent deadlocks by giving each transaction a priority and ensuring that lower

priority transactions are not allowed to wait for higher priority transactions (or vice

versa). One way to assign priorities is to give each transaction a timestamp when it

starts up. The lower the timestamp, the higher the transaction’s priority, that is, the

oldest transaction has the highest priority.

If a transaction Ti requests a lock and transaction Tj holds a conflicting lock, the lock

manager can use one of the following two policies:

Wait-die: If Ti has higher priority, it is allowed to wait; otherwise it is aborted.

Wound-wait: If Ti has higher priority, abort Tj; otherwise Ti waits.

In the wait-die scheme, lower priority transactions can never wait for higher priority

transactions. In the wound-wait scheme, higher priority transactions never wait for

lower priority transactions. In either case no deadlock cycle can develop.

A subtle point is that we must also ensure that no transaction is perennially aborted

because it never has a sufficiently high priority. (Note that in both schemes, the higher

priority transaction is never aborted.) When a transaction is aborted and restarted, it

should be given the same timestamp that it had originally. Reissuing timestamps in

this way ensures that each transaction will eventually become the oldest transaction,

and thus the one with the highest priority, and will get all the locks that it requires.

The wait-die scheme is nonpreemptive; only a transaction requesting a lock can be

aborted. As a transaction grows older (and its priority increases), it tends to wait for

more and more younger transactions. A younger transaction that conflicts with an

older transaction may be repeatedly aborted (a disadvantage with respect to wound-

wait), but on the other hand, a transaction that has all the locks it needs will never

be aborted for deadlock reasons (an advantage with respect to wound-wait, which is

preemptive).

Concurrency Control 547

Deadlock Detection

Deadlocks tend to be rare and typically involve very few transactions. This observation

suggests that rather than taking measures to prevent deadlocks, it may be better to

detect and resolve deadlocks as they arise. In the detection approach, the DBMS must

periodically check for deadlocks.

When a transaction Ti is suspended because a lock that it requests cannot be granted,

it must wait until all transactions Tj that currently hold conflicting locks release them.

The lock manager maintains a structure called a waits-for graph to detect deadlock

cycles. The nodes correspond to active transactions, and there is an arc from Ti to

Tj if (and only if) Ti is waiting for Tj to release a lock. The lock manager adds

edges to this graph when it queues lock requests and removes edges when it grants

lock requests.

Consider the schedule shown in Figure 19.3. The last step, shown below the line,

creates a cycle in the waits-for graph. Figure 19.4 shows the waits-for graph before

and after this step.

T1 T2 T3 T4

S(A)

R(A)

X(B)

W (B)

S(B)

S(C)

R(C)

X(C)

X(B)

X(A)

Figure 19.3 Schedule Illustrating Deadlock

Observe that the waits-for graph describes all active transactions, some of which will

eventually abort. If there is an edge from Ti to Tj in the waits-for graph, and both

Ti and Tj eventually commit, there will be an edge in the opposite direction (from Tj

to Ti) in the precedence graph (which involves only committed transactions).

The waits-for graph is periodically checked for cycles, which indicate deadlock. A

deadlock is resolved by aborting a transaction that is on a cycle and releasing its locks;

this action allows some of the waiting transactions to proceed.

548 Chapter 19

(a) (b)

T1 T2

T3T4

T1 T2

T3T4

Figure 19.4 Waits-for Graph before and after Deadlock

As an alternative to maintaining a waits-for graph, a simplistic way to identify dead-

locks is to use a timeout mechanism: if a transaction has been waiting too long for a

lock, we can assume (pessimistically) that it is in a deadlock cycle and abort it.

19.2.3 Performance of Lock-Based Concurrency Control

Designing a good lock-based concurrency control mechanism in a DBMS involves mak-

ing a number of choices:

Should we use deadlock-prevention or deadlock-detection?

If we use deadlock-detection, how frequently should we check for deadlocks?

If we use deadlock-detection and identify a deadlock, which transaction (on some

cycle in the waits-for graph, of course) should we abort?

Lock-based schemes are designed to resolve conflicts between transactions and use one

of two mechanisms: blocking and aborting transactions. Both mechanisms involve a

performance penalty; blocked transactions may hold locks that force other transactions

to wait, and aborting and restarting a transaction obviously wastes the work done

thus far by that transaction. A deadlock represents an extreme instance of blocking in

which a set of transactions is forever blocked unless one of the deadlocked transactions

is aborted by the DBMS.

Detection versus Prevention

In prevention-based schemes, the abort mechanism is used preemptively in order to

avoid deadlocks. On the other hand, in detection-based schemes, the transactions

in a deadlock cycle hold locks that prevent other transactions from making progress.

System throughput is reduced because many transactions may be blocked, waiting to

obtain locks currently held by deadlocked transactions.

Concurrency Control 549

This is the fundamental trade-off between these prevention and detection approaches

to deadlocks: loss of work due to preemptive aborts versus loss of work due to blocked

transactions in a deadlock cycle. We can increase the frequency with which we check

for deadlock cycles, and thereby reduce the amount of work lost due to blocked trans-

actions, but this entails a corresponding increase in the cost of the deadlock detection

mechanism.

A variant of 2PL called Conservative 2PL can also prevent deadlocks. Under Con-

servative 2PL, a transaction obtains all the locks that it will ever need when it begins,

or blocks waiting for these locks to become available. This scheme ensures that there

will not be any deadlocks, and, perhaps more importantly, that a transaction that

already holds some locks will not block waiting for other locks. The trade-off is that a

transaction acquires locks earlier. If lock contention is low, locks are held longer under

Conservative 2PL. If lock contention is heavy, on the other hand, Conservative 2PL

can reduce the time that locks are held on average, because transactions that hold

locks are never blocked.

Frequency of Deadlock Detection

Empirical results indicate that deadlocks are relatively infrequent, and detection-based

schemes work well in practice. However, if there is a high level of contention for locks,

and therefore an increased likelihood of deadlocks, prevention-based schemes could

perform better.

Choice of Deadlock Victim

When a deadlock is detected, the choice of which transaction to abort can be made

using several criteria: the one with the fewest locks, the one that has done the least

work, the one that is farthest from completion, and so on. Further, a transaction

might have been repeatedly restarted and then chosen as the victim in a deadlock

cycle. Such transactions should eventually be favored during deadlock detection and

allowed to complete.

The issues involved in designing a good concurrency control mechanism are complex,

and we have only outlined them briefly. For the interested reader, there is a rich

literature on the topic, and some of this work is mentioned in the bibliography.

19.3 SPECIALIZED LOCKING TECHNIQUES

Thus far, we have treated a database as a fixed collection of independent data objects

in our presentation of locking protocols. We now relax each of these restrictions and

discuss the consequences.

550 Chapter 19

If the collection of database objects is not fixed, but can grow and shrink through the

insertion and deletion of objects, we must deal with a subtle complication known as

the phantom problem. We discuss this problem in Section 19.3.1.

Although treating a database as an independent collection of objects is adequate for

a discussion of serializability and recoverability, much better performance can some-

times be obtained using protocols that recognize and exploit the relationships between

objects. We discuss two such cases, namely, locking in tree-structured indexes (Sec-

tion 19.3.2) and locking a collection of objects with containment relationships between

them (Section 19.3.3).

19.3.1 Dynamic Databases and the Phantom Problem

Consider the following example: Transaction T1 scans the Sailors relation to find the

oldest sailor for each of the rating levels 1 and 2. First, T1 identifies and locks all pages

(assuming that page-level locks are set) containing sailors with rating 1 and then finds

the age of the oldest sailor, which is, say, 71. Next, transaction T2 inserts a new sailor

with rating 1 and age 96. Observe that this new Sailors record can be inserted onto

a page that does not contain other sailors with rating 1; thus, an exclusive lock on

this page does not conflict with any of the locks held by T1. T2 also locks the page

containing the oldest sailor with rating 2 and deletes this sailor (whose age is, say, 80).

T2 then commits and releases its locks. Finally, transaction T1 identifies and locks

pages containing (all remaining) sailors with rating 2 and finds the age of the oldest

such sailor, which is, say, 63.

The result of the interleaved execution is that ages 71 and 63 are printed in response

to the query. If T1 had run first, then T2, we would have gotten the ages 71 and 80;

if T2 had run first, then T1, we would have gotten the ages 96 and 63. Thus, the

result of the interleaved execution is not identical to any serial exection of T1 and T2,

even though both transactions follow Strict 2PL and commit! The problem is that

T1 assumes that the pages it has locked include all pages containing Sailors records

with rating 1, and this assumption is violated when T2 inserts a new such sailor on a

different page.

The flaw is not in the Strict 2PL protocol. Rather, it is in T1’s implicit assumption

that it has locked the set of all Sailors records with rating value 1. T1’s semantics

requires it to identify all such records, but locking pages that contain such records at a

given time does not prevent new “phantom” records from being added on other pages.

T1 has therefore not locked the set of desired Sailors records.

Strict 2PL guarantees conflict serializability; indeed, there are no cycles in the prece-

dence graph for this example because conflicts are defined with respect to objects (in

this example, pages) read/written by the transactions. However, because the set of

Concurrency Control 551

objects that should have been locked by T1 was altered by the actions of T2, the out-

come of the schedule differed from the outcome of any serial execution. This example

brings out an important point about conflict serializability: If new items are added to

the database, conflict serializability does not guarantee serializability!

A closer look at how a transaction identifies pages containing Sailors records with

rating 1 suggests how the problem can be handled:

If there is no index, and all pages in the file must be scanned, T1 must somehow

ensure that no new pages are added to the file, in addition to locking all existing

pages.

If there is a dense index1 on the rating field, T1 can obtain a lock on the in-

dex page—again, assuming that physical locking is done at the page level—that

contains a data entry with rating=1. If there are no such data entries, that is,

no records with this rating value, the page that would contain a data entry for

rating=1 is locked, in order to prevent such a record from being inserted. Any

transaction that tries to insert a record with rating=1 into the Sailors relation

must insert a data entry pointing to the new record into this index page and is

blocked until T1 releases its locks. This technique is called index locking.

Both techniques effectively give T1 a lock on the set of Sailors records with rating=1:

each existing record with rating=1 is protected from changes by other transactions,

and additionally, new records with rating=1 cannot be inserted.

An independent issue is how transaction T1 can efficiently identify and lock the index

page containing rating=1. We discuss this issue for the case of tree-structured indexes

in Section 19.3.2.

We note that index locking is a special case of a more general concept called predicate

locking. In our example, the lock on the index page implicitly locked all Sailors records

that satisfy the logical predicate rating=1. More generally, we can support implicit

locking of all records that match an arbitrary predicate. General predicate locking is

expensive to implement and is therefore not commonly used.

19.3.2 Concurrency Control in B+ Trees

A straightforward approach to concurrency control for B+ trees and ISAM indexes is

to ignore the index structure, treat each page as a data object, and use some version

of 2PL. This simplistic locking strategy would lead to very high lock contention in

the higher levels of the tree because every tree search begins at the root and proceeds

along some path to a leaf node. Fortunately, much more efficient locking protocols

1This idea can be adapted to work with sparse indexes as well.

552 Chapter 19

that exploit the hierarchical structure of a tree index are known to reduce the locking

overhead while ensuring serializability and recoverability. We discuss some of these

approaches briefly, concentrating on the search and insert operations.

Two observations provide the necessary insight:

1. The higher levels of the tree only serve to direct searches, and all the ‘real’ data is

in the leaf levels (in the format of one of the three alternatives for data entries).

2. For inserts, a node must be locked (in exclusive mode, of course) only if a split

can propagate up to it from the modified leaf.

Searches should obtain shared locks on nodes, starting at the root and proceeding

along a path to the desired leaf. The first observation suggests that a lock on a node

can be released as soon as a lock on a child node is obtained, because searches never

go back up.

A conservative locking strategy for inserts would be to obtain exclusive locks on all

nodes as we go down from the root to the leaf node to be modified, because splits can

propagate all the way from a leaf to the root. However, once we lock the child of a

node, the lock on the node is required only in the event that a split propagates back

up to it. In particular, if the child of this node (on the path to the modified leaf) is

not full when it is locked, any split that propagates up to the child can be resolved at

the child, and will not propagate further to the current node. Thus, when we lock a

child node, we can release the lock on the parent if the child is not full. The locks held

thus by an insert force any other transaction following the same path to wait at the

earliest point (i.e., the node nearest the root) that might be affected by the insert.

We illustrate B+ tree locking using the tree shown in Figure 19.5. To search for the

data entry 38*, a transaction Ti must obtain an S lock on node A, read the contents

and determine that it needs to examine node B, obtain an S lock on node B and

release the lock on A, then obtain an S lock on node C and release the lock on B, then

obtain an S lock on node D and release the lock on C.

Ti always maintains a lock on one node in the path, in order to force new transactions

that want to read or modify nodes on the same path to wait until the current transac-

tion is done. If transaction Tj wants to delete 38*, for example, it must also traverse

the path from the root to node D and is forced to wait until Ti is done. Of course, if

some transaction Tk holds a lock on, say, node C before Ti reaches this node, Ti is

similarly forced to wait for Tk to complete.

To insert data entry 45*, a transaction must obtain an S lock on node A, obtain an S

lock on node B and release the lock on A, then obtain an S lock on node C (observe

that the lock on B is not released, because C is full!), then obtain an X lock on node

Concurrency Control 553

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

20

4438126 23

3510

D E

C

B

A

F

G H I

Figure 19.5 B+ Tree Locking Example

E and release the locks on C and then B. Because node E has space for the new entry,

the insert is accomplished by modifying this node.

In contrast, consider the insertion of data entry 25*. Proceeding as for the insert of

45*, we obtain an X lock on node H. Unfortunately, this node is full and must be

split. Splitting H requires that we also modify the parent, node F , but the transaction

has only an S lock on F . Thus, it must request an upgrade of this lock to an X lock.

If no other transaction holds an S lock on F , the upgrade is granted, and since F has

space, the split will not propagate further, and the insertion of 25* can proceed (by

splitting H and locking G to modify the sibling pointer in I to point to the newly

created node). However, if another transaction holds an S lock on node F , the first

transaction is suspended until this transaction releases its S lock.

Observe that if another transaction holds an S lock on F and also wants to access

node H, we have a deadlock because the first transaction has an X lock on H! The

above example also illustrates an interesting point about sibling pointers: When we

split leaf node H, the new node must be added to the left of H, since otherwise the

node whose sibling pointer is to be changed would be node I, which has a different

parent. To modify a sibling pointer on I, we would have to lock its parent, node C

(and possibly ancestors of C, in order to lock C).

Except for the locks on intermediate nodes that we indicated could be released early,

some variant of 2PL must be used to govern when locks can be released, in order to

ensure serializability and recoverability.

554 Chapter 19

This approach improves considerably upon the naive use of 2PL, but several exclusive

locks are still set unnecessarily and, although they are quickly released, affect perfor-

mance substantially. One way to improve performance is for inserts to obtain shared

locks instead of exclusive locks, except for the leaf, which is locked in exclusive mode.

In the vast majority of cases, a split is not required, and this approach works very

well. If the leaf is full, however, we must upgrade from shared locks to exclusive locks

for all nodes to which the split propagates. Note that such lock upgrade requests can

also lead to deadlocks.

The tree locking ideas that we have described illustrate the potential for efficient locking

protocols in this very important special case, but they are not the current state of the

art. The interested reader should pursue the leads in the bibliography.

19.3.3 Multiple-Granularity Locking

Another specialized locking strategy is called multiple-granularity locking, and it

allows us to efficiently set locks on objects that contain other objects.

For instance, a database contains several files, a file is a collection of pages, and a

page is a collection of records. A transaction that expects to access most of the pages

in a file should probably set a lock on the entire file, rather than locking individual

pages (or records!) as and when it needs them. Doing so reduces the locking overhead

considerably. On the other hand, other transactions that require access to parts of the

file—even parts that are not needed by this transaction—are blocked. If a transaction

accesses relatively few pages of the file, it is better to lock only those pages. Similarly,

if a transaction accesses several records on a page, it should lock the entire page, and

if it accesses just a few records, it should lock just those records.

The question to be addressed is how a lock manager can efficiently ensure that a page,

for example, is not locked by a transaction while another transaction holds a conflicting

lock on the file containing the page (and therefore, implicitly, on the page).

The idea is to exploit the hierarchical nature of the ‘contains’ relationship. A database

contains a set of files, each file contains a set of pages, and each page contains a set

of records. This containment hierarchy can be thought of as a tree of objects, where

each node contains all its children. (The approach can easily be extended to cover

hierarchies that are not trees, but we will not discuss this extension.) A lock on a node

locks that node and, implicitly, all its descendants. (Note that this interpretation of

a lock is very different from B+ tree locking, where locking a node does not lock any

descendants implicitly!)

In addition to shared (S) and exclusive (X) locks, multiple-granularity locking pro-

tocols also use two new kinds of locks, called intention shared (IS) and intention

Concurrency Control 555

exclusive (IX) locks. IS locks conflict only with X locks. IX locks conflict with S

and X locks. To lock a node in S (respectively X) mode, a transaction must first lock

all its ancestors in IS (respectively IX) mode. Thus, if a transaction locks a node in

S mode, no other transaction can have locked any ancestor in X mode; similarly, if a

transaction locks a node in X mode, no other transaction can have locked any ancestor

in S or X mode. This ensures that no other transaction holds a lock on an ancestor

that conflicts with the requested S or X lock on the node.

A common situation is that a transaction needs to read an entire file and modify a few

of the records in it; that is, it needs an S lock on the file and an IX lock so that it

can subsequently lock some of the contained objects in X mode. It is useful to define

a new kind of lock called an SIX lock that is logically equivalent to holding an S lock

and an IX lock. A transaction can obtain a single SIX lock (which conflicts with any

lock that conflicts with either S or IX) instead of an S lock and an IX lock.

A subtle point is that locks must be released in leaf-to-root order for this protocol

to work correctly. To see this, consider what happens when a transaction Ti locks

all nodes on a path from the root (corresponding to the entire database) to the node

corresponding to some page p in IS mode, locks p in S mode, and then releases the

lock on the root node. Another transaction Tj could now obtain an X lock on the

root. This lock implicitly gives Tj an X lock on page p, which conflicts with the S

lock currently held by Ti.

Multiple-granularity locking must be used with 2PL in order to ensure serializability.

2PL dictates when locks can be released. At that time, locks obtained using multiple-

granularity locking can be released and must be released in leaf-to-root order.

Finally, there is the question of how to decide what granularity of locking is appropriate

for a given transaction. One approach is to begin by obtaining fine granularity locks

(e.g., at the record level) and after the transaction requests a certain number of locks

at that granularity, to start obtaining locks at the next higher granularity (e.g., at the

page level). This procedure is called lock escalation.

19.4 TRANSACTION SUPPORT IN SQL-92 *

We have thus far studied transactions and transaction management using an abstract

model of a transaction as a sequence of read, write, and abort/commit actions. We now

consider what support SQL provides for users to specify transaction-level behavior.

A transaction is automatically started when a user executes a statement that modifies

either the database or the catalogs, such as a SELECT query, an UPDATE command,

556 Chapter 19

or a CREATE TABLE statement.2 Once a transaction is started, other statements can

be executed as part of this transaction until the transaction is terminated by either a

COMMIT command or a ROLLBACK (the SQL keyword for abort) command.

19.4.1 Transaction Characteristics

Every transaction has three characteristics: access mode, diagnostics size, and isolation

level. The diagnostics size determines the number of error conditions that can be

recorded; we will not discuss this feature further.

If the access mode is READ ONLY, the transaction is not allowed to modify the

database. Thus, INSERT, DELETE, UPDATE, and CREATE commands cannot be executed.

If we have to execute one of these commands, the access mode should be set to READ

WRITE. For transactions with READ ONLY access mode, only shared locks need to be

obtained, thereby increasing concurrency.

The isolation level controls the extent to which a given transaction is exposed to the

actions of other transactions executing concurrently. By choosing one of four possible

isolation level settings, a user can obtain greater concurrency at the cost of increasing

the transaction’s exposure to other transactions’ uncommitted changes.

Isolation level choices are READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ,

and SERIALIZABLE. The effect of these levels is summarized in Figure 19.6. In this

context, dirty read and unrepeatable read are defined as usual. Phantom is defined to

be the possibility that a transaction retrieves a collection of objects (in SQL terms, a

collection of tuples) twice and sees different results, even though it does not modify

any of these tuples itself. The highest degree of isolation from the effects of other

Level Dirty Read Unrepeatable Read Phantom

READ UNCOMMITTED Maybe Maybe Maybe

READ COMMITTED No Maybe Maybe

REPEATABLE READ No No Maybe

SERIALIZABLE No No No

Figure 19.6 Transaction Isolation Levels in SQL-92

transactions is achieved by setting isolation level for a transaction T to SERIALIZABLE.

This isolation level ensures that T reads only the changes made by committed transac-

tions, that no value read or written by T is changed by any other transaction until T

is complete, and that if T reads a set of values based on some search condition, this set

2There are some SQL statements that do not require the creation of a transaction.

Concurrency Control 557

is not changed by other transactions until T is complete (i.e., T avoids the phantom

phenomenon).

In terms of a lock-based implementation, a SERIALIZABLE transaction obtains locks

before reading or writing objects, including locks on sets of objects that it requires to

be unchanged (see Section 19.3.1), and holds them until the end, according to Strict

2PL.

REPEATABLE READ ensures that T reads only the changes made by committed transac-

tions, and that no value read or written by T is changed by any other transaction until

T is complete. However, T could experience the phantom phenomenon; for example,

while T examines all Sailors records with rating=1, another transaction might add a

new such Sailors record, which is missed by T .

A REPEATABLE READ transaction uses the same locking protocol as a SERIALIZABLE

transaction, except that it does not do index locking, that is, it locks only individual

objects, not sets of objects.

READ COMMITTED ensures that T reads only the changes made by committed transac-

tions, and that no value written by T is changed by any other transaction until T is

complete. However, a value read by T may well be modified by another transaction

while T is still in progress, and T is, of course, exposed to the phantom problem.

A READ COMMITTED transaction obtains exclusive locks before writing objects and holds

these locks until the end. It also obtains shared locks before reading objects, but these

locks are released immediately; their only effect is to guarantee that the transaction

that last modified the object is complete. (This guarantee relies on the fact that every

SQL transaction obtains exclusive locks before writing objects and holds exclusive locks

until the end.)

A READ UNCOMMITTED transaction T can read changes made to an object by an ongoing

transaction; obviously, the object can be changed further while T is in progress, and

T is also vulnerable to the phantom problem.

A READ UNCOMMITTED transaction does not obtain shared locks before reading objects.

This mode represents the greatest exposure to uncommitted changes of other trans-

actions; so much so that SQL prohibits such a transaction from making any changes

itself—a READ UNCOMMITTED transaction is required to have an access mode of READ

ONLY. Since such a transaction obtains no locks for reading objects, and it is not al-

lowed to write objects (and therefore never requests exclusive locks), it never makes

any lock requests.

The SERIALIZABLE isolation level is generally the safest and is recommended for most

transactions. Some transactions, however, can run with a lower isolation level, and the

558 Chapter 19

smaller number of locks requested can contribute to improved system performance.

For example, a statistical query that finds the average sailor age can be run at the

READ COMMITTED level, or even the READ UNCOMMITTED level, because a few incorrect

or missing values will not significantly affect the result if the number of sailors is large.

The isolation level and access mode can be set using the SET TRANSACTION com-

mand. For example, the following command declares the current transaction to be

SERIALIZABLE and READ ONLY:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

When a transaction is started, the default is SERIALIZABLE and READ WRITE.

19.4.2 Transactions and Constraints

SQL constructs for defining integrity constraints were presented in Chapter 3. As

noted there, an integrity constraint represents a condition that must be satisfied by

the database state. An important question that arises is when to check integrity

constraints.

By default, a constraint is checked at the end of every SQL statement that could lead

to a violation, and if there is a violation, the statement is rejected. Sometimes this

approach is too inflexible. Consider the following variants of the Sailors and Boats

relations; every sailor is assigned to a boat, and every boat is required to have a

captain.

CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

assigned INTEGER NOT NULL,

PRIMARY KEY (sid),

FOREIGN KEY (assigned) REFERENCES Boats (bid))

CREATE TABLE Boats (bid INTEGER,

bname CHAR(10),

color CHAR(10),

captain INTEGER NOT NULL,

PRIMARY KEY (bid)

FOREIGN KEY (captain) REFERENCES Sailors (sid))

Whenever a Boats tuple is inserted, there is a check to see if the captain is in the

Sailors relation, and whenever a Sailors tuple is inserted, there is a check to see that

Concurrency Control 559

the assigned boat is in the Boats relation. How are we to insert the very first boat or

sailor tuple? One cannot be inserted without the other. The only way to accomplish

this insertion is to defer the constraint checking that would normally be carried out

at the end of an INSERT statement.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstraintFoo DEFERRED

A constraint that is in deferred mode is checked at commit time. In our example, the

foreign key constraints on Boats and Sailors can both be declared to be in deferred

mode. We can then insert a boat with a nonexistent sailor as the captain (temporar-

ily making the database inconsistent), insert the sailor (restoring consistency), then

commit and check that both constraints are satisfied.

19.5 CONCURRENCY CONTROL WITHOUT LOCKING

Locking is the most widely used approach to concurrency control in a DBMS, but it

is not the only one. We now consider some alternative approaches.

19.5.1 Optimistic Concurrency Control

Locking protocols take a pessimistic approach to conflicts between transactions and

use either transaction abort or blocking to resolve conflicts. In a system with relatively

light contention for data objects, the overhead of obtaining locks and following a locking

protocol must nonetheless be paid.

In optimistic concurrency control, the basic premise is that most transactions will not

conflict with other transactions, and the idea is to be as permissive as possible in

allowing transactions to execute. Transactions proceed in three phases:

1. Read: The transaction executes, reading values from the database and writing

to a private workspace.

2. Validation: If the transaction decides that it wants to commit, the DBMS checks

whether the transaction could possibly have conflicted with any other concurrently

executing transaction. If there is a possible conflict, the transaction is aborted;

its private workspace is cleared and it is restarted.

3. Write: If validation determines that there are no possible conflicts, the changes

to data objects made by the transaction in its private workspace are copied into

the database.

560 Chapter 19

If, indeed, there are few conflicts, and validation can be done efficiently, this approach

should lead to better performance than locking does. If there are many conflicts, the

cost of repeatedly restarting transactions (thereby wasting the work they’ve done) will

hurt performance significantly.

Each transaction Ti is assigned a timestamp TS(Ti) at the beginning of its validation

phase, and the validation criterion checks whether the timestamp-ordering of transac-

tions is an equivalent serial order. For every pair of transactions Ti and Tj such that

TS(Ti) < TS(Tj), one of the following conditions must hold:

1. Ti completes (all three phases) before Tj begins; or

2. Ti completes before Tj starts its Write phase, and Ti does not write any database

object that is read by Tj; or

3. Ti completes its Read phase before Tj completes its Read phase, and Ti does not

write any database object that is either read or written by Tj.

To validate Tj, we must check to see that one of these conditions holds with respect to

each committed transaction Ti such that TS(Ti) < TS(Tj). Each of these conditions

ensures that Tj’s modifications are not visible to Ti.

Further, the first condition allows Tj to see some of Ti’s changes, but clearly, they

execute completely in serial order with respect to each other. The second condition

allows Tj to read objects while Ti is still modifying objects, but there is no conflict

because Tj does not read any object modified by Ti. Although Tj might overwrite

some objects written by Ti, all of Ti’s writes precede all of Tj’s writes. The third

condition allows Ti and Tj to write objects at the same time, and thus have even

more overlap in time than the second condition, but the sets of objects written by the

two transactions cannot overlap. Thus, no RW, WR, or WW conflicts are possible if

any of these three conditions is met.

Checking these validation criteria requires us to maintain lists of objects read and

written by each transaction. Further, while one transaction is being validated, no other

transaction can be allowed to commit; otherwise, the validation of the first transaction

might miss conflicts with respect to the newly committed transaction.

Clearly, it is not the case that optimistic concurrency control has no concurrency

control overhead; rather, the locking overheads of lock-based approaches are replaced

with the overheads of recording read-lists and write-lists for transactions, checking for

conflicts, and copying changes from the private workspace. Similarly, the implicit cost

of blocking in a lock-based approach is replaced by the implicit cost of the work wasted

by restarted transactions.

Concurrency Control 561

19.5.2 Timestamp-Based Concurrency Control

In lock-based concurrency control, conflicting actions of different transactions are or-

dered by the order in which locks are obtained, and the lock protocol extends this

ordering on actions to transactions, thereby ensuring serializability. In optimistic con-

currency control, a timestamp ordering is imposed on transactions, and validation

checks that all conflicting actions occurred in the same order.

Timestamps can also be used in another way: each transaction can be assigned a times-

tamp at startup, and we can ensure, at execution time, that if action ai of transaction

Ti conflicts with action aj of transaction Tj, ai occurs before aj if TS(Ti) < TS(Tj).

If an action violates this ordering, the transaction is aborted and restarted.

To implement this concurrency control scheme, every database object O is given a read

timestamp RTS(O) and a write timestamp WTS(O). If transaction T wants to

read object O, and TS(T) < WTS(O), the order of this read with respect to the

most recent write on O would violate the timestamp order between this transaction

and the writer. Therefore, T is aborted and restarted with a new, larger timestamp.

If TS(T) > WTS(O), T reads O, and RTS(O) is set to the larger of RTS(O) and

TS(T). (Note that there is a physical change—the change to RTS(O)—to be written

to disk and to be recorded in the log for recovery purposes, even on reads. This write

operation is a significant overhead.)

Observe that if T is restarted with the same timestamp, it is guaranteed to be aborted

again, due to the same conflict. Contrast this behavior with the use of timestamps

in 2PL for deadlock prevention: there, transactions were restarted with the same

timestamp as before in order to avoid repeated restarts. This shows that the two uses

of timestamps are quite different and should not be confused.

Next, let us consider what happens when transaction T wants to write object O:

1. If TS(T) < RTS(O), the write action conflicts with the most recent read action

of O, and T is therefore aborted and restarted.

2. If TS(T) < WTS(O), a naive approach would be to abort T because its write

action conflicts with the most recent write of O and is out of timestamp order. It

turns out that we can safely ignore such writes and continue. Ignoring outdated

writes is called the Thomas Write Rule.

3. Otherwise, T writes O and WTS(O) is set to TS(T).

562 Chapter 19

The Thomas Write Rule

We now consider the justification for the Thomas Write Rule. If TS(T) < WTS(O),

the current write action has, in effect, been made obsolete by the most recent write of O,

which follows the current write according to the timestamp ordering on transactions.

We can think of T ’s write action as if it had occurred immediately before the most

recent write of O and was never read by anyone.

If the Thomas Write Rule is not used, that is, T is aborted in case (2) above, the

timestamp protocol, like 2PL, allows only conflict serializable schedules. (Both 2PL

and this timestamp protocol allow schedules that the other does not.) If the Thomas

Write Rule is used, some serializable schedules are permitted that are not conflict

serializable, as illustrated by the schedule in Figure 19.7. Because T2’s write follows

T1 T2

R(A)

W (A)

Commit

W (A)

Commit

Figure 19.7 A Serializable Schedule That Is Not Conflict Serializable

T1’s read and precedes T1’s write of the same object, this schedule is not conflict

serializable. The Thomas Write Rule relies on the observation that T2’s write is never

seen by any transaction and the schedule in Figure 19.7 is therefore equivalent to the

serializable schedule obtained by deleting this write action, which is shown in Figure

19.8.

T1 T2

R(A)

Commit

W (A)

Commit

Figure 19.8 A Conflict Serializable Schedule

Concurrency Control 563

Recoverability

Unfortunately, the timestamp protocol presented above permits schedules that are

not recoverable, as illustrated by the schedule in Figure 19.9. If TS(T1) = 1 and

T1 T2

W (A)

R(A)

W (B)

Commit

Figure 19.9 An Unrecoverable Schedule

TS(T2) = 2, this schedule is permitted by the timestamp protocol (with or without

the Thomas Write Rule). The timestamp protocol can be modified to disallow such

schedules by buffering all write actions until the transaction commits. In the example,

when T1 wants to write A, WTS(A) is updated to reflect this action, but the change

to A is not carried out immediately; instead, it is recorded in a private workspace,

or buffer. When T2 wants to read A subsequently, its timestamp is compared with

WTS(A), and the read is seen to be permissible. However, T2 is blocked until T1

completes. If T1 commits, its change to A is copied from the buffer; otherwise, the

changes in the buffer are discarded. T2 is then allowed to read A.

This blocking of T2 is similar to the effect of T1 obtaining an exclusive lock on A!

Nonetheless, even with this modification the timestamp protocol permits some sched-

ules that are not permitted by 2PL; the two protocols are not quite the same.

Because recoverability is essential, such a modification must be used for the timestamp

protocol to be practical. Given the added overheads this entails, on top of the (consid-

erable) cost of maintaining read and write timestamps, timestamp concurrency control

is unlikely to beat lock-based protocols in centralized systems. Indeed, it has mainly

been studied in the context of distributed database systems (Chapter 21).

19.5.3 Multiversion Concurrency Control

This protocol represents yet another way of using timestamps, assigned at startup

time, to achieve serializability. The goal is to ensure that a transaction never has to

wait to read a database object, and the idea is to maintain several versions of each

database object, each with a write timestamp, and to let transaction Ti read the most

recent version whose timestamp precedes TS(Ti).

564 Chapter 19

What do real systems do? IBM DB2, Informix, Microsoft SQL Server, and

Sybase ASE use Strict 2PL or variants (if a transaction requests a lower than

SERIALIZABLE SQL isolation level; see Section 19.4). Microsoft SQL Server but

also supports modification timestamps so that a transaction can run without set-

ting locks and validate itself (do-it-yourself optimistic CC!). Oracle 8 uses a mul-

tiversion concurrency control scheme in which readers never wait; in fact, readers

never get locks, and detect conflicts by checking if a block changed since they read

it. All of these systems support multiple-granularity locking, with support for ta-

ble, page, and row level locks. All of them deal with deadlocks using waits-for

graphs. Sybase ASIQ only supports table-level locks and aborts a transaction if a

lock request fails—updates (and therefore conflicts) are rare in a data warehouse,

and this simple scheme suffices.

If transaction Ti wants to write an object, we must ensure that the object has not

already been read by some other transaction Tj such that TS(Ti) < TS(Tj). If we

allow Ti to write such an object, its change should be seen by Tj for serializability,

but obviously Tj, which read the object at some time in the past, will not see Ti’s

change.

To check this condition, every object also has an associated read timestamp, and

whenever a transaction reads the object, the read timestamp is set to the maximum of

the current read timestamp and the reader’s timestamp. If Ti wants to write an object

O and TS(Ti) < RTS(O), Ti is aborted and restarted with a new, larger timestamp.

Otherwise, Ti creates a new version of O, and sets the read and write timestamps of

the new version to TS(Ti).

The drawbacks of this scheme are similar to those of timestamp concurrency control,

and in addition there is the cost of maintaining versions. On the other hand, reads are

never blocked, which can be important for workloads dominated by transactions that

only read values from the database.

19.6 POINTS TO REVIEW

Two schedules are conflict equivalent if they order every pair of conflicting actions

of two committed transactions in the same way. A schedule is conflict serializable if

it is conflict equivalent to some serial schedule. A schedule is called strict if a value

written by a transaction T is not read or overwritten by other transactions until

T either aborts or commits. Potential conflicts between transactions in a schedule

can be described in a precedence graph or serializability graph. A variant of Strict

2PL called two-phase locking (2PL) allows transactions to release locks before

the transaction commits or aborts. Once a transaction following 2PL releases any

Concurrency Control 565

lock, however, it cannot acquire additional locks. Both 2PL and Strict 2PL ensure

that only conflict serializable schedules are permitted to execute. (Section 19.1)

The lock manager is the part of the DBMS that keeps track of the locks issued. It

maintains a lock table with lock table entries that contain information about the

lock, and a transaction table with a pointer to the list of locks held by each trans-

action. Locking and unlocking objects must be atomic operations. Lock upgrades,

the request to acquire an exclusive lock on an object for which the transaction

already holds a shared lock, are handled in a special way. A deadlock is a cycle of

transactions that are all waiting for another transaction in the cycle to release a

lock. Deadlock prevention or detection schemes are used to resolve deadlocks. In

conservative 2PL, a deadlock-preventing locking scheme, a transaction obtains all

its locks at startup or waits until all locks are available. (Section 19.2)

If the collection of database objects is not fixed, but can grow and shrink through

insertion and deletion of objects, we must deal with a subtle complication known

as the phantom problem. In the phantom problem, a transaction can retrieve a

collection of records twice with different results due to insertions of new records

from another transaction. The phantom problem can be avoided through index

locking. In tree index structures, the higher levels of the tree are very contended

and locking these pages can become a performance bottleneck. Specialized locking

techniques that release locks as early as possible can be used to improve perfor-

mance for tree index structures. Multiple-granularity locking enables us to set

locks on objects that contain other objects, thus implicitly locking all contained

objects. (Section 19.3)

SQL supports two access modes (READ ONLY and READ WRITE) and four isolation lev-

els (READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, and SERIALIZABLE)

that control the extent to which a given transaction is exposed to the actions of

other concurrently executing transactions. SQL allows the checking of constraints

to be deferred until the transaction commits. (Section 19.4)

Besides locking, there are alternative approaches to concurrency control. In op-

timistic concurrency control, no locks are set and transactions read and modify

data objects in a private workspace. In a subsequent validation phase, the DBMS

checks for potential conflicts, and if no conflicts occur, the changes are copied

to the database. In timestamp-based concurrency control, transactions are as-

signed a timestamp at startup and actions that reach the database are required

to be ordered by the timestamp of the transactions involved. A special rule called

Thomas Write Rule allows us to ignore subsequent writes that are not ordered.

Timestamp-based concurrency control allows schedules that are not recoverable,

but it can be modified through buffering to disallow such schedules. We briefly

discussed multiversion concurrency control. (Section 19.5)

566 Chapter 19

EXERCISES

Exercise 19.1 1. Define these terms: conflict-serializable schedule, view-serializable sched-

ule, strict schedule.

2. Describe each of the following locking protocols: 2PL, Conservative 2PL.

3. Why must lock and unlock be atomic operations?

4. What is the phantom problem? Can it occur in a database where the set of database

objects is fixed and only the values of objects can be changed?

5. Identify one difference in the timestamps assigned to restarted transactions when times-

tamps are used for deadlock prevention versus when timestamps are used for concurrency

control.

6. State and justify the Thomas Write Rule.

Exercise 19.2 Consider the following classes of schedules: serializable, conflict-serializable,

view-serializable, recoverable, avoids-cascading-aborts, and strict. For each of the following

schedules, state which of the above classes it belongs to. If you cannot decide whether a

schedule belongs in a certain class based on the listed actions, explain briefly.

The actions are listed in the order they are scheduled, and prefixed with the transaction name.

If a commit or abort is not shown, the schedule is incomplete; assume that abort/commit

must follow all the listed actions.

1. T1:R(X), T2:R(X), T1:W(X), T2:W(X)

2. T1:W(X), T2:R(Y), T1:R(Y), T2:R(X)

3. T1:R(X), T2:R(Y), T3:W(X), T2:R(X), T1:R(Y)

4. T1:R(X), T1:R(Y), T1:W(X), T2:R(Y), T3:W(Y), T1:W(X), T2:R(Y)

5. T1:R(X), T2:W(X), T1:W(X), T2:Abort, T1:Commit

6. T1:R(X), T2:W(X), T1:W(X), T2:Commit, T1:Commit

7. T1:W(X), T2:R(X), T1:W(X), T2:Abort, T1:Commit

8. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Commit

9. T1:W(X), T2:R(X), T1:W(X), T2:Commit, T1:Abort

10. T2: R(X), T3:W(X), T3:Commit, T1:W(Y), T1:Commit, T2:R(Y),

T2:W(Z), T2:Commit

11. T1:R(X), T2:W(X), T2:Commit, T1:W(X), T1:Commit, T3:R(X), T3:Commit

12. T1:R(X), T2:W(X), T1:W(X), T3:R(X), T1:Commit, T2:Commit, T3:Commit

Exercise 19.3 Consider the following concurrency control protocols: 2PL, Strict 2PL, Con-

servative 2PL, Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the

Thomas Write Rule, and Multiversion. For each of the schedules in Exercise 19.2, state which

of these protocols allows it, that is, allows the actions to occur in exactly the order shown.

For the timestamp-based protocols, assume that the timestamp for transaction Ti is i and

that a version of the protocol that ensures recoverability is used. Further, if the Thomas

Write Rule is used, show the equivalent serial schedule.

Concurrency Control 567

Exercise 19.4 Consider the following sequences of actions, listed in the order they are sub-

mitted to the DBMS:

Sequence S1: T1:R(X), T2:W(X), T2:W(Y), T3:W(Y), T1:W(Y),

T1:Commit, T2:Commit, T3:Commit

Sequence S2: T1:R(X), T2:W(Y), T2:W(X), T3:W(Y), T1:W(Y),

T1:Commit, T2:Commit, T3:Commit

For each sequence and for each of the following concurrency control mechanisms, describe

how the concurrency control mechanism handles the sequence.

Assume that the timestamp of transaction Ti is i. For lock-based concurrency control mech-

anisms, add lock and unlock requests to the above sequence of actions as per the locking

protocol. The DBMS processes actions in the order shown. If a transaction is blocked, as-

sume that all of its actions are queued until it is resumed; the DBMS continues with the next

action (according to the listed sequence) of an unblocked transaction.

1. Strict 2PL with timestamps used for deadlock prevention.

2. Strict 2PL with deadlock detection. (Show the waits-for graph if a deadlock cycle devel-

ops.)

3. Conservative (and strict, i.e., with locks held until end-of-transaction) 2PL.

4. Optimistic concurrency control.

5. Timestamp concurrency control with buffering of reads and writes (to ensure recover-

ability) and the Thomas Write Rule.

6. Multiversion concurrency control.

Exercise 19.5 For each of the following locking protocols, assuming that every transaction

follows that locking protocol, state which of these desirable properties are ensured: serializ-

ability, conflict-serializability, recoverability, avoid cascading aborts.

1. Always obtain an exclusive lock before writing; hold exclusive locks until end-of-transaction.

No shared locks are ever obtained.

2. In addition to (1), obtain a shared lock before reading; shared locks can be released at

any time.

3. As in (2), and in addition, locking is two-phase.

4. As in (2), and in addition, all locks held until end-of-transaction.

Exercise 19.6 The Venn diagram (from [76]) in Figure 19.10 shows the inclusions between

several classes of schedules. Give one example schedule for each of the regions S1 through

S12 in the diagram.

Exercise 19.7 Briefly answer the following questions:

1. Draw a Venn diagram that shows the inclusions between the classes of schedules permit-

ted by the following concurrency control protocols: 2PL, Strict 2PL, Conservative 2PL,

Optimistic, Timestamp without the Thomas Write Rule, Timestamp with the Thomas

Write Rule, and Multiversion.

568 Chapter 19

S5

S11 S12

All Schedules

View Serializable

Conflict Serializable

Recoverable

Avoid Cascading Abort

Strict

SerialS10

S8 S9

S6

S3S2

S7

S4

S1

Figure 19.10 Venn Diagram for Classes of Schedules

2. Give one example schedule for each region in the diagram.

3. Extend the Venn diagram to include the class of serializable and conflict-serializable

schedules.

Exercise 19.8 Answer each of the following questions briefly. The questions are based on

the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real, did: integer)

Dept(did: integer, dname: string, floor: integer)

and on the following update command:

replace (salary = 1.1 * EMP.salary) where EMP.ename = ‘Santa’

1. Give an example of a query that would conflict with this command (in a concurrency

control sense) if both were run at the same time. Explain what could go wrong, and how

locking tuples would solve the problem.

2. Give an example of a query or a command that would conflict with this command, such

that the conflict could not be resolved by just locking individual tuples or pages, but

requires index locking.

3. Explain what index locking is and how it resolves the preceding conflict.

Exercise 19.9 SQL-92 supports four isolation-levels and two access-modes, for a total of

eight combinations of isolation-level and access-mode. Each combination implicitly defines a

class of transactions; the following questions refer to these eight classes.

1. For each of the eight classes, describe a locking protocol that allows only transactions in

this class. Does the locking protocol for a given class make any assumptions about the

locking protocols used for other classes? Explain briefly.

2. Consider a schedule generated by the execution of several SQL transactions. Is it guar-

anteed to be conflict-serializable? to be serializable? to be recoverable?

Concurrency Control 569

3. Consider a schedule generated by the execution of several SQL transactions, each of

which has READ ONLY access-mode. Is it guaranteed to be conflict-serializable? to be

serializable? to be recoverable?

4. Consider a schedule generated by the execution of several SQL transactions, each of

which has SERIALIZABLE isolation-level. Is it guaranteed to be conflict-serializable? to

be serializable? to be recoverable?

5. Can you think of a timestamp-based concurrency control scheme that can support the

eight classes of SQL transactions?

Exercise 19.10 Consider the tree shown in Figure 19.5. Describe the steps involved in

executing each of the following operations according to the tree-index concurrency control

algorithm discussed in Section 19.3.2, in terms of the order in which nodes are locked, un-

locked, read and written. Be specific about the kind of lock obtained and answer each part

independently of the others, always starting with the tree shown in Figure 19.5.

1. Search for data entry 40*.

2. Search for all data entries k∗ with k ≤ 40.

3. Insert data entry 62*.

4. Insert data entry 40*.

5. Insert data entries 62* and 75*.

Exercise 19.11 Consider a database that is organized in terms of the following hierarachy

of objects: The database itself is an object (D), and it contains two files (F1 and F2), each

of which contains 1000 pages (P1 . . . P1000 and P1001 . . . P2000, respectively). Each page

contains 100 records, and records are identified as p : i, where p is the page identifier and i is

the slot of the record on that page.

Multiple-granularity locking is used, with S, X, IS, IX and SIX locks, and database-level,

file-level, page-level and record-level locking. For each of the following operations, indicate

the sequence of lock requests that must be generated by a transaction that wants to carry

out (just) these operations:

1. Read record P1200 : 5.

2. Read records P1200 : 98 through P1205 : 2.

3. Read all (records on all) pages in file F1.

4. Read pages P500 through P520.

5. Read pages P10 through P980.

6. Read all pages in F1 and modify about 10 pages, which can be identified only after

reading F1.

7. Delete record P1200 : 98. (This is a blind write.)

8. Delete the first record from each page. (Again, these are blind writes.)

9. Delete all records.

570 Chapter 19

BIBLIOGRAPHIC NOTES

A good recent survey of concurrency control methods and their performance is [644]. Multiple-

granularity locking is introduced in [286] and studied further in [107, 388].

Concurrent access to B trees is considered in several papers, including [57, 394, 409, 440, 590].

A concurrency control method that works with the ARIES recovery method is presented in

[474]. Another paper that considers concurrency control issues in the context of recovery is

[427]. Algorithms for building indexes without stopping the DBMS are presented in [477] and

[6]. The performance of B tree concurrency control algorithms is studied in [615]. Concurrency

control techniques for Linear Hashing are presented in [203] and [472].

Timestamp-based multiversion concurrency control is studied in [540]. Multiversion concur-

rency control algorithms are studied formally in [74]. Lock-based multiversion techniques

are considered in [398]. Optimistic concurrency control is introduced in [395]. Transaction

management issues for real-time database systems are discussed in [1, 11, 311, 322, 326, 387].

A locking approach for high-contention environments is proposed in [240]. Performance of

various concurrency control algorithms is discussed in [12, 640, 645]. [393] is a comprehensive

collection of papers on this topic. There is a large body of theoretical results on database

concurrency control. [507, 76] offer thorough textbook presentations of this material.

